Colloidal Processing and Freeze Casting for Net-Shaping

Kathy Lu
Chris Kessler
Xiaojing Zhu

CNMS User Facility Collaborator: Rich Kasica

June 14-16, 2006

Materials Science and Engineering

Nanomaterial Fabrication Approaches

- Top-down Approach
 - Lithography (focused ion beam lithography, electron beam lithography)
 - Imprint lithography
 - Electrochemical approach
- Bottom-up approach
 - 0D: nanoparticles
 - 1D: nanotubes, nanowires, nanorods
 - 2D: nanofilm, nanocoating
- 3D particulate nanomaterials bridge these aspects and have extremely promising application potentials

Motivation

- Use mostly water to create stable nanoparticle suspensions of high solids loading while avoiding complicated organic removal/drying processes
- Develop an inexpensive, easy-to-use forming process for nanostructured ceramics—freeze casting
- Make complex near-net shapes

Suspension System

- Al₂O₃ Nanoparticles, (Nanophase Technologies, Romeoville, IL)
- TEM, Zetasizer NS, d₅₀=27.5 nm
- Carbon Nanotube, Helix Material Solution, Richardson, TX)

Suspension System, cont'd

 Poly(acrylic acid) [PAA], M_W 1,800 (Aldrich, St Louis, MO)

$$\left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right)} \right) \\ \left(\left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\begin{array}{c} \left(\right) \right) \\ (c & c \right) \end{array} \right) \end{array} \right) \end{array} \right) \end{array} \right) \end{array} \right) \end{array}\right) \right) \right) \right)} \right)$$

- NH₄OH & HCl used to adjust pH
- Glycerol (Fisher Chemicals, Fairlawn, NJ)

Electrosteric Stabilization

Optimization of Dispersant

- Suspensions: pH = 9.5, 30 vol% Al₂O₃
- Evaluation criteria
 - PAA adsorption: Potentiometric titration
 - Viscosity, AR2000 Rheometer (TA Instruments, New Castle, DE)

Optimization of pH

- Suspensions of 30 vol% Al₂O₃, 2.0 wt % PAA
- Valley of low viscosity between pH 7.5-9.5

Solids Loading and Viscosity

- Viscosity of Al₂O₃ suspensions at 20-45% solids loading
- Viscosity increases as solids loading increases but 45% solids loading is achieved

Theoretical Solids Loading Limit

- Suspension solids loading has direct effect on green density
- Viscosity → solids loading → green density
- $\eta_r = [1 (\Phi/\Phi_m)]^{-[\eta]\Phi_m}$
 - » $\eta_r = \eta_s / \eta_0$: Relative viscosity
 - » [η]: Intrinsic viscosity
 - » Ф: Solids loading
 - » Φ_m Maximum solids loading
- Assume that at Φ_m viscosity approaches infinity.
 - Model relative viscosity by 1 $\eta_r^{-1/n}$ = $a\Phi + b^*$
 - Use empirical data to extrapolate Φ_m where η_r is infinite

*D Liu, J Mat Sci 35 (2000) 5503-5507

Viscosity vs Solids Loading

- Assumptions:
 - At a shear rate $\sim 100 \text{ s}^{-1}$, [n] = 2
 - Model applicable over a wide solids loading range 20-60 vol%
- Extrapolated $\Phi_{\rm m}$ = 50.7 vol%

CNT Effect on Suspension Viscosity

โech

 A threshold CNT value for substantial rheology change, 1.3 vol%

Freeze Casting

Frozen at-35°C for 2 hours

Pressure decreased to
 <10⁴ Pa for 36 hours

 Suspension of 40 vol% solids loading was poured into silicone mold

 Freeze-cast in Labconco Stoppering Tray Dryer (Labconco, Kansas City, MO)

A Dime

Green Microstructure

(a) with pre-rest stabilization, (b) with no pre-rest stabilization

53% green density is achieved after freeze drying

Relative Density

Conclusions

- Optimal suspension conditions are pH 9.5, 2.0 wt% PAA
- Theoretical maximum solids loading is estimated at 50.7 vol% Al₂O₃
- Experimentally was able to achieve 45 vol% solids loading
- Suspensions of 40 vol% Al₂O₃ w/ and w/o
 CNTs were freeze cast successfully
- Freeze dried sample had ~53% density for 40 vol% Al₂O₃ suspension, CNT- Al₂O₃ sample has ~50% solids loading.

Future Work

- Continue to improve suspension properties in order to increase solids loading and eventually green density
- Assemble multiple compositions into complex geometries
- Sintering densification & new properties such as suppressing grain growth and introducing conductivity
- Direct device fabrication

